A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations.

نویسندگان

  • P R Beetham
  • P B Kipp
  • X L Sawycky
  • C J Arntzen
  • G D May
چکیده

Self-complementary chimeric oligonucleotides (COs) composed of DNA and modified RNA residues were evaluated as a means to (i) create stable, site-specific base substitutions in a nuclear gene and (ii) introduce a frameshift in a nuclear transgene in plant cells. To demonstrate the creation of allele-specific mutations in a member of a gene family, COs were designed to target the codon for Pro-196 of SuRA, a tobacco acetolactate synthase (ALS) gene. An amino acid substitution at Pro-196 of ALS confers a herbicide-resistance phenotype that can be used as a selectable marker in plant cells. COs were designed to contain a 25-nt homology domain comprised of a five-deoxyribonucleotide region (harboring a single base mismatch to the native ALS sequence) flanked by regions each composed of 10 ribonucleotides. After recovery of herbicide-resistant tobacco cells on selective medium, DNA sequence analyses identified base conversions in the ALS gene at the codon for Pro-196. To demonstrate a site-specific insertion of a single base into a targeted gene, COs were used to restore expression of an inactive green fluorescent protein transgene that had been designed to contain a single base deletion. Recovery of fluorescent cells confirmed the deletion correction. Our results demonstrate the application of a technology to modify individual genetic loci by catalyzing either a base substitution or a base addition to specific nuclear genes; this approach should have great utility in the area of plant functional genomics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides.

Site-specific heritable mutations in maize genes were engineered by introducing chimeric RNA/DNA oligonucleotides. Two independent targets within the endogenous maize acetohydroxyacid synthase gene sequence were modified in a site-specific fashion, thereby conferring resistance to either imidazolinone or sulfonylurea herbicides. Similarly, an engineered green fluorescence protein transgene was ...

متن کامل

Genetic repair of mutations in plant cell-free extracts directed by specific chimeric oligonucleotides.

Chimeric oligonucleotides are synthetic molecules comprised of RNA and DNA bases assembled in a double hairpin conformation. These molecules have been shown to direct gene conversion events in mammalian cells and animals through a process involving at least one protein from the DNA mismatch repair pathway. The mechanism of action for gene repair in mammalian cells has been partially elucidated ...

متن کامل

Commentary Gene therapy in plants

Genetics allows the elucidation of gene function through the analysis of gene malfunction. Modern genetics and genomics require ways for in situ modification of genes, by means of point mutations, deletions, and additions. The availability of sequence information of many organisms dictates rapid development of reverse genetics procedures. Until recently, targeting of genes with the help of intr...

متن کامل

Breakthrough Technologies Genetic Repair of Mutations in Plant Cell-Free Extracts Directed by Specific Chimeric Oligonucleotides

Chimeric oligonucleotides are synthetic molecules comprised of RNA and DNA bases assembled in a double hairpin conformation. These molecules have been shown to direct gene conversion events in mammalian cells and animals through a process involving at least one protein from the DNA mismatch repair pathway. The mechanism of action for gene repair in mammalian cells has been partially elucidated ...

متن کامل

Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA.

Targeted mutagenesis, editing of endogenous maize (Zea mays) genes, and site-specific insertion of a trait gene using clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)-guide RNA technology are reported in maize. DNA vectors expressing maize codon-optimized Streptococcus pyogenes Cas9 endonuclease and single guide RNAs were cointroduced with or without DNA repai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 15  شماره 

صفحات  -

تاریخ انتشار 1999